МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

Сучасні технології у промисловому виробництві

МАТЕРІАЛИ та програма

III Всеукраїнської міжвузівської науково-технічної конференції (Суми, 22–25 квітня 2014 року)

ЧАСТИНА 1

Конференція присвячена Дню науки в Україні

Суми Сумський державний університет 2014

ПРИМЕНЕНИЕ РАЗЛИЧНЫХ РАСЧЕТНЫХ СХЕМ ЗАКРЕПЛЕНИЯ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ БАЛКИ

Беловол В. А, ученица, СШ №12, Смирнов В. А., директор, НТТУМ, СумГУ, г. Сумы

Рассмотрено несколько расчётных схем балок: статически определимая и статически неопределимые $(2 \div 4)$.

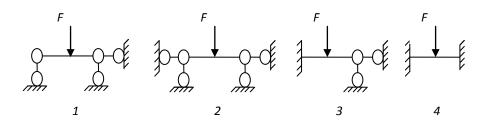


Рисунок – Расчетная схема балок

Для каждой из расчётных схем определялись значения изгибающих моментов и поперечных схем по таблицам.

Исходя из условия прочности по расчётным сопротивлениям определялась величина M_{max} для каждой расчётной схемы.

Далее изготавливались: каркасы из проволоки класса Bp-1, опалубка для монолитных балок сечением $b \cdot h = 30 \cdot 10$. Определялась величина относительной высоты сжатой зоны бетона $\xi = \frac{x}{h_0}$, где x — высота сжатой

зоны бетона $x = \frac{R_s A_s}{R_b \cdot b}$, здесь R_s - расчётное сопротивление арматуры Bp-1,

 A_s - площадь поперечного сечения арматуры, R_b - расчётное сопротивление бетона, класса B-20, $h_0=h-a$ - рабочая высота сечения, a - защитный слой бетона.

Вычислялась величина $M_{ceu} = R_b \cdot b \cdot x (M_0 - 0.5x)$.

Обязательно выполнение условия $M_{max} \le M_{ceq}$.

Выполнялась заливка бетоном опалубки для каждого каркаса $1 \div 4$, с учётом выдержки.

Проводились испытания балок в лаборатории на кафедре сопротивления материалов и машиноведения. Определялась допускаемая нагрузка для каждой схемы закрепления, которая сравнивалась с расчётной. Выполнялся стенд размером 850×850 мм.